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Value of DNA Tests: A Decision Perspective

ABSTRACT: Before a Court of Law testifying in DNA-evidence cases, scientists are often challenged with the idea that the more markers (loci)
the better, i.e., why does the scientist not use 16 or more markers? This paper introduces a new perspective, decision analysis, to deal with the
problem of the number of markers to type in a criminal context. The decision-making process, which plays a key role in the routine work of a
forensic scientist, consists of the rational choice, given personal objectives, between two or more possible outcomes when the consequences of the
choice are uncertain. Simulated results support the hypothesis that analytical added value does not increase with the number of markers.
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There have been several efforts to clarify the approach to in-
terpreting DNA evidence (e.g., Evett and Weir (1)). Despite these
efforts, there are still important questions for the forensic scientist.
One is of extreme relevance: how many markers must be typed for
forensic purposes to compare the crime sample with the suspect’s
material? The question appears to be a simple one because, for
practical reasons, the scientist uses commercial kits offering, for
example, results of 16 markers simultaneously. But this question
is being asked for a more fundamental reason and the answer has
repercussions for other forensic disciplines. To answer this ques-
tion, it is crucial to be familiar with the added value offered by
each supplementary marker typed. Some authors (2) have noticed
that in Court, there are often suggestions that the more markers the
better, i.e. why did the scientist not use 10, 11, 12, or more mark-
ers?

It is also not uncommon to hear about the need to increase the
number of markers through the development of new n-locus STR
profiling systems (with n>16). One reason is that in case it is
necessary, the scientist will achieve a greater discrimination.
Moreover, it is claimed that if the size of a database used to se-
lect a potential suspect increases, the number of markers analyzed
should increase as well to guarantee discrimination.

The fundamental questions are still open: how is one to decide
the number of markers to type? How can the scientist be sure that
results from, say, 20 markers are enough for forensic purposes?
What is the meaning of “forensic purposes”?

As mentioned by Triggs and Buckleton (3) (p. 108):

The DNA technology is so powerful that it can
accommodate inaccurate interpretation procedures and
still have little chance of leading to a false conclusion.
The potential power and the technology has lead to
recommendations that appear to be a combination of
poor logic and a reliance on the technology to give the
correct conclusion regardless of the lack of rigorous
attention to principles of interpretation.
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Solid logic should be used. This should be done by using sound
mathematical and population-genetic principles. Therefore, stud-
ies describing the validation of STR systems have been per-
formed. These studies have all found that STR multiplexes have
a high power of discrimination. They have shown that a large
majority of cases meet required levels of discrimination (e.g.,
Thomson et al. (4)). Further STR loci are available to allow ad-
ditional testing in the small number of cases requiring it. It has
been advocated that a simple three- or four-locus multiplex can
easily be incorporated into the testing routine.

The panel of 16 markers forms the basis of a highly
informative and convenient system for investigation of
parentage and other claimed relationships. [. . .] In terms of
the ability to exclude non-parents and to provide a high
level of certainty in cases of non-exclusion [...].
(Thomson et al. (5) p. 133)

This paper introduces a new perspective, decision analysis, to
deal with the problem at hand. The decision-making process,
which plays a key role in the routine work of a forensic scientist,
consists of the rational choice, given personal objectives, between
two or more possible outcomes when the consequences of the
choice are uncertain (6).

Decision analysis helps the scientist to better understand the
problem he is faced with and to make clearer and more consistent
decisions. The aim of this paper is to propose an approach that
allows one to think systematically about a problem, while offering
more structure and guidance in answering such questions as:
“what conclusions can be drawn from the available evidence?”
and “why is the chosen action appropriate?”

This paper approaches these points through the use of an ex-
ample involving DNA evidence in forensic science to justify
the number of markers to type in a criminal context. Graphical
models, such as influence diagrams (also called Bayesian de-
cision networks), are also introduced to deal with the problem at
hand.

Decision Analysis

Should you buy a Lotto ticket? Should you type a number, n, of
DNA markers? In each case, you decide upon an action. Hacking
(7) describes the model needed when we are uncertain not only
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about what will happen or what is true but also about what action
to take. Therefore, decisions need more than probabilities.

Actions have consequences. You waste a dollar (or
perhaps win a fortune). You take no action at all, which
in itself is an action. Some consequences are desirable;
some are not. Suppose you can represent the cost or benefit
of a possible consequence by a number—an amount in
dollars, perhaps. Call that number the uwtility of the
consequence. Suppose you can also represent the
probability of each possible consequence of an action by
a number.

In making a decision, we want to assess the relative merits
of each possible action. There is a simple way to combine
probabilities and utilities in order to evaluate possible
actions: multiply them together. Multiply the probability
by the utility of each consequence of an action and then
add the results for each possible consequence of the action.
The result of this calculation is called the expected value of
an action. (Hacking (7) p. 79-80)

As outlined above, faced by a decision problem, it is of extreme
importance to identify the elements of the situation under inves-
tigation. There are four relevant elements (8):

1. Objectives. They refer to important matters to the decision-
maker. In what follows, the objective is the optimization of the
analytical strategy. We may say that the objective is to type the
optimal number of markers to support the hypothesis, i.e., that
a given suspect is the source of a bloodstain (prosecutor’s per-
spective) or that an unrelated person, randomly selected, is the
source of the stain (defense’s perspective).

2. Decision to Make. To identify the immediate decision to make
is a critical step in understanding a difficult decision problem.
In identifying the central decision, it is important to think
about possible alternatives. This paper approaches the problem
of deciding the number of genetic markers to type, so the pos-
sible alternatives are given by the increasing number of mark-
ers to type (1, 2, ..., m).

3. States of Nature. Decision problems can be complicated be-
cause of uncertainty about what the future holds. The possible
things that can happen in the resolution of state of nature are
called outcomes. In the specific case, the state of nature will be
represented by apportionments of likelihood ratio.

4. Consequences. Once a decision is made and the state of nature
occurs, then the occurrence of the event will produce a definite
result that can be foreseen with certainty. The measure of the
extent of objective achievement is called utility, or preference
for one of the consequences.

Let us introduce some useful notation. First, let us consider an
exhaustive list of actions that are available: d, d,, . . ., d,, €A. Itis
convenient to make the requirement of exclusivity: only one of the
decisions can be selected.

Second, a list of n exclusive and exhaustive states of nature is
needed: 0y, 0,, ..., 0, € Q. It is possible to measure the uncer-
tainty of the events using a suitable probability distribution, P,
over Q. Therefore, each alternative is associated with a probability
distribution and a choice among probability distributions.

The combination of decision d; with state of nature 0; will result
in a foreseeable consequence. This consequence will be written as
Cy. Varying d;,i=1, ..., m, and Gj,j= 1, ..., n, a space of con-
sequences is obtained. Consequences are defined in such a way

that it is possible for them to be ranked as “best” for the first, and
“worst” for the last. With this particular ranking, it is not imme-
diately obvious which decision should be taken. It follows that the
next task is to provide something more than just a ranking. In
order to do this, a standard is introduced and a coherent compari-
son with this standard provides a numerical assessment.

Let us assume that C is the best consequence and c is the worst
of them, C and c being a reference pair of highly desirable and
highly undesirable consequences, respectively. It follows that any
consequence C; may be compared unfavorably with C and favor-
ably with c. Associated with any consequence C;; is a unique
number, ue (0,1), such that Cj; is just as desirable a probability u
of C as 1 —u of c. The number associated with C;; will be denoted
u(Cy), or equally u(d, 0,), and will be called the utility of Cj;.

Utility is a measure of the desirability of the consequences of a
course of action that applies to decision-making under risk. Utility
is a probability: it is by definition the probability of obtaining the
best consequence (9). Note that consequences will be valued dif-
ferently by different people. The value inserted for the utilities is
by no means correct or that any other values are necessarily
wrong. They represent decision-makers’ individual preferences
and may be modified by the individuals. The only inviolate feature
is their coherence (9).

To be a rational decision-maker, one must choose the action
offering the highest probability of obtaining the best consequence.
If decision d; is taken and if state 0; occurs, the probability of
obtaining the consequence C is

Pr(Cld;, ) = u(Cy).

A decision problem is solved by maximizing expected utility.
This rule is known as the rule of the maximization of the expected
utility. The expected utility of decision d; gives a numerical value
to the probability of obtaining the best consequence if decision d;
is taken:

n

E(U|di) = iPY(CIdn 6) Pr(6)ld)) = > u(Cy) Pr(8)ldy). (1)

=1

The numerical order of expected utilities of actions preserves
the decision-maker’s preference order among these actions.

Note that probabilities of the states of nature depend on the
decision adopted. In many decision problems, there is not this
same dependency, and so Pr(0;) is written, omitting the decision
(see the example presented in Taroni (6)). In practice, they can,
but this complication does not affect the method. In fact, in “ex-
tending the conversation” (10) from C to include the 0s, we should
have to combine Pr(Cld;, 0;) with Pr(0;ld;), and not only with

An application of this theory in a judicial context has been
suggested by Lindley (11). Examples in forensic science appear in
Taroni (6,12).

Likelihood Ratios as States of Nature

The aim of this paper is to estimate the value of the information
given by each new marker typed in a DNA context. It is important
to assess after how many markers it is reasonable to believe that a
new one will not increase the total information available. This has
to be done for cases where the evidence is assessed under two
competing hypotheses: (1) the suspect is the source of the recov-
ered stain; and (2) another person (unrelated to the suspect) is the



TABLE 1—Apportionments of likelihood ratio and states of nature.

v States of Nature
[0,1) 0,
[1,10) 0,
[10,100) 05
[100,1000) 0,4
[1000,10,000) 05
[10,000, 100,000) 0s
[100,000, 1,000,000) 0,
1,000,000, 10,000,000) O
>10,000,000 09

source of this stain, so that the match between the profile E. of the
crime sample and the profile E of the suspect is accidental (a
match due to the chance alone).

This is in accordance with a widely accepted foundation that a
likelihood ratio, V, represents a unified measure for the value of
scientific evidence (13). The likelihood ratio in a common situ-
ation involving DNA, where there are both profiles E. and E; and
where [ represents the background information, can be expressed
as

_ Pr(Ec|E, Hy, 1)
 Pr(E.|Es,Hy, 1)’

where propositions, at the source level (14), are H},: the suspect is
the source of the stain, Hy: another person, unrelated to the sus-
pect, is the source of the stain.

In a pre-assessment perspective, where the scientist would like
to offer an answer to the question of obtaining a value of evidence
supporting the proposition Hy, or Hyg, the estimation of theoretical
distributions of likelihood ratios is fundamental (15).

States of nature have been defined as apportionments of like-
lihood ratio in adequacy to verbal scales proposed in forensic lit-
erature (e.g., Evett et al. (16,17)). The apportionments of
likelihood ratio and the states of nature are given in Table 1.
Note that 0g represents the last interval considered because studies
have shown that the “independence assumptions” between loci in
a second generation multiplex are sufficiently reliable to infer
probabilities that are of the order of one in tens of millions (18).
This offers likelihood ratios of the order of tens of millions.
Smaller probability values (greater likelihood ratios), although not
necessarily wrong, are without any real meaning; it might be ar-
gued that even this apparently cautious figure lies beyond the
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range of numbers that can be supported by conventional inde-
pendent testing ((19) pp. 347—48).

An assessment of probabilities for each state of nature is need-
ed. From a practical point of view, allele frequencies (at different
loci) from a selected population database are chosen. It is assumed
that these frequencies can be used to generate new databases
through simulation techniques as suggested by Triggs and
Buckleton (3).

Two databases of a large number of pairs of individuals are
generated. For each pair, the first genotype represents character-
istics of the source of the recovered stain, and the second is the
suspect’s genotype. The first database is composed of pairs of in-
dividuals having the same genotype at each locus: under propos-
ition Hp, the suspect and the source of the stain are the same
person.

The second database is composed of pairs of unrelated indi-
viduals. For each pair, the two genotypes generally do not match.
A possible match is due to chance alone: different individuals will
match at some loci, but the large majority of loci will not.

The dimension of the databases is fixed to be 100,000 pairs of
individuals. Simulations have shown that this dimension is suffi-
cient to estimate the distributions of the likelihood ratios.

For each given pair of individuals in the first database, a like-
lihood ratio is estimated. In this way, it is possible to estimate the
theoretical distribution of V under Hj,. The same procedure is per-
formed for pairs of individuals coming from the second database
(unrelated individuals), and so the distribution of V under Hy can
be estimated.

A co-ancestry coefficient, Fgr, set to be 0.01, is used in simu-
lations to take into account the effect of sub-populations in as-
sessing random match probabilities as suggested by Balding and
Nichols (20). Tables 2 and 3 show the probabilities of each state of
nature calculated under propositions H,, and Hy, respectively. Note
that probabilities of the states of nature depend on the number of
markers typed, d;, and are developed using “extension the con-
versation”:

Pr(0;|d;) = Pr(0;|d;, Hy) Pr(H,) + Pr(0;|d;, Ha) Pr(Ha),  (2)

where Pr(H,) and Pr(H,) represent the prior probabilities that the
suspect is, or is not, the source of the recovered material, respect-
ively.

The values in Table 2 show that if H, is true (Pr(Hp) = 1), so
that the suspect is the donor of the stain, the probabilities of ob-
taining high values of V are very high. In particular, with more

TABLE 2—Probabilities of the states of nature under proposition Hy,.

Pr(6,) Pr(6,) Pr(65) Pr(6,) Pr(0s) Pr(6s) Pr(6) Pr(s) Pr(6o)
1 locus 0 0.49492 0.0087 0 0 0 0 0 0
2 loci 0 0 0.31661 0.65125 0.03165 0.00049 0 0 0
3 loci 0 0 0 0.11859 0.69493 0.17566 0.01057 0.00025 0
4 loci 0 0 0 0 0.00230 0.4580 0.456820 0.07778 0.0051
5 loci 0 0 0 0 0 0 0.1034 0.54055 0.35605
6 loci 0 0 0 0 0 0 0.00067 0.13839 0.86094
7 loci 0 0 0 0 0 0 0 0.0023 0.99797
8 loci 0 0 0 0 0 0 0 0 1
9 loci 0 0 0 0 0 0 0 0 1
10 loci 0 0 0 0 0 0 0 0 1
11 loci 0 0 0 0 0 0 0 0 1
12 loci 0 0 0 0 0 0 0 0 1
13 loci 0 0 0 0 0 0 0 0 1
14 loci 0 0 0 0 0 0 0 0 1
15 loci 0 0 0 0 0 0 0 0 1
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TABLE 3—Probabilities of the states of nature under proposition H, (unrelated).

Pr(6,) Pr(6,) Pr(65) Pr(6.) Pr(6s) Pr(66) Pr(6,) Pr(65) Pr(6o)
1 locus 0.91109 0.06396 0.02512 0 0 0 0 0 0
2 loci 0.99215 0 0.00441 0.00344 0 0 0 0 0
3 loci 0.99965 0 0 0.0001 0.00024 0.00001 0 0 0
4 loci 1 0 0 0 0 0 0 0 0
5 loci 1 0 0 0 0 0 0 0 0
6 loci 1 0 0 0 0 0 0 0 0
7 loci 1 0 0 0 0 0 0 0 0
8 loci 1 0 0 0 0 0 0 0 0
9 loci 1 0 0 0 0 0 0 0 0
10 loci 1 0 0 0 0 0 0 0 0
11 loci 1 0 0 0 0 0 0 0 0
12 loci 1 0 0 0 0 0 0 0 0
13 loci 1 0 0 0 0 0 0 0 0
14 loci 1 0 0 0 0 0 0 0 0
15 loci 1 0 0 0 0 0 0 0 0

than seven markers typed, the likelihood ratios are always greater
than 10,000,000.

The values in Table 3 show greater probabilities for low-like-
lihood ratio apportionments, notably in states 0,—0,. In fact, if Hy
is true (Pr(Hy) = 1), so that the suspect is not the source of the
stain, the probability of obtaining a value of V <1 is greater than
in the previous situation (Pr(Hp) = 1).

There is clearly an overlap between the two distributions. The
overlap decreases and finally disappears as the number of markers
typed increases. Note that the values presented in Tables 2 and 3
provide the answer to the pre-assessment question of obtaining a
likelihood ratio value supporting either the proposition Hy, or Hy.
The values of V show that an informed result can be obtained.

Such simulations allow the scientist to detect how many mark-
ers should be typed so that any further marker does not bring any
more valuable information. From Table 2, it can be observed that,
if the subject is the source of the stain, there is no need to type
more than eight markers. Conversely, from Table 3, it can be ob-
served that, if the subject is not the source of the stain and an
unrelated person is, then there is no reasonable need to type more
than four markers.

Related Persons as a Relevant Population

Consider the possibility that there might be pairs of individuals
who have the same profile for some marker. In this case, a match
can be misleading and so a larger number of markers is recom-
mended. Therefore, instead of using a database of pairs of unre-

lated individuals characterizing the relevant population under
proposition Hy, the use of a database of pairs of individuals who
will likely have common alleles appears to be more appropriate.
A database with these characteristics is constituted by pairs of
full siblings; this represents an extremely conservative situation.
The probabilities of the states of nature are then computed as
illustrated above and given in Table 4. It can be observed that
once 14 markers have been typed, any further marker will not
bring more information, as the probability of finding a nonmatch
approaches 1.

The results presented in Table 4 are in agreement with forensic
literature (e.g., Evett et al. (19)) in which the great potential of the
10-loci system has been studied when close relatives are consid-
ered. The probability that two brothers would have the same six
loci profile is roughly 1 in 500 (0.00182 for Pr(6y)), whereas with
10 loci, this probability is in the order of 1 in 20,000 (0.00005 for
Pr(6o)).

Utility as a Measure for the Value of Information

In the previous section, simulations were performed to inves-
tigate how the number of markers typed affects the probability of
the states of nature. Utility theory can now be implemented to
quantify the added value of information offered by each new
marker typed.

Utilities are quantified using the standard presented in the Sec-
tion entitled “Decision analysis.” It is reasonable to believe that a
prosecutor, a defense lawyer, and a judge have different objec-

TABLE 4—Probabilities of the states of nature under proposition Hy (full siblings).

Pr(0,) Pr(0,) Pr(05) Pr(0,) Pr(0s) Pr(05) Pr(07) Pr(0g) Pr(0o)

1 locus 0.61159 0.21102 0.17509 0.0023 0 0 0 0 0

2 loci 0.85143 0 0.05345 0.0917 0.00338 0 0 0 0

3 loci 0.94866 0 0 0.00774 0.0352 0.00809 0.00031 0 0

4 loci 0.98308 0 0 0 0.0001 0.00814 0.00755 0.00108 0.0001
5 loci 0.99467 0 0 0 0 0 0.00063 0.00295 0.00175
6 loci 0.99784 0 0 0 0 0 0 0.00034 0.00182
7 loci 0.99906 0 0 0 0 0 0 0 0.00094
8 loci 0.99962 0 0 0 0 0 0 0 0.00038
9 loci 0.99989 0 0 0 0 0 0 0 0.00011
10 loci 0.99995 0 0 0 0 0 0 0 0.00005
11 loci 0.99998 0 0 0 0 0 0 0 0.00002
12 loci 0.99999 0 0 0 0 0 0 0 0.00001
13 loci 0.99999 0 0 0 0 0 0 0 0.00001
14 loci 1 0 0 0 0 0 0 0 0
15 loci 1 0 0 0 0 0 0 0 0




TABLE 5—Utility values for the states of nature given different objectives.
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TABLE 7—Expected utility in cases involving related persons (full siblings).

Pr(8,) Pr(8,) Pr(65) Pr(64) Pr(Bs) Pr(6s) Pr(6;) Pr(8s) Pr(8,)

Prosecution 0 0.1 0.1 02 03 0.5 0.7 0.9 1
Defense 1 0.9 0.7 0.5 0.3 0.2 0.1 0.1 0
Judge 1 09 0.8 0.5 0.4 0.5 0.8 0.9 1

tives, and so different utility functions. The prosecutor will prob-
ably assign high utility values to states of nature corresponding to
high values of likelihood ratio. On the other hand, the defense
lawyer will assign high utility values to the states of nature cor-
responding to low values of likelihood ratio. The judge will have a
more neutral position as he must consider the possibility that the
suspect might or might not be the source of the stain. Therefore, it
is reasonable to think that he will assign high utility values to
extreme states of nature corresponding to apportionments of like-
lihood ratio that strongly support both propositions. Purely for the
sake of illustration, different utility values corresponding to the
different objectives are proposed in Table 5.

Utilities, u, assigned to intermediate consequences are specified
in answering the question: does the decision-maker prefer the in-
termediate consequence or does he prefer the best consequence
with a probability set equal to u?

The value u is the threshold of indifference. It is also assumed
that the utility is constant for all possible decisions: u(0;, d;) =
u®),vji=1,..,nVj=1..,m

Consider the prosecution perspective and compute the expected
utility of typing i markers, i =1, ..., m. The expected utility of
decision d; will be

E(U|d;) = _ u(Prosecution, 6;) - Pr(6|d;). (3)

J=1

The prosecutor will generally assign a probability close to 1 to
the proposition that the suspect is the source of the stain, Pr(Hp).
The defense will do conversely, while the judge will generally
have a neutral position. In Table 6, the expected utilities are com-
puted for the prosecutor’s, defense’s and judge’s perspectives,
with prior probability, Pr(H,), set equal to 1, 0, and 0.5, respect-
ively.

Note that it is generally inadvisable to attach probabilities of
zero or one to states of nature (Cromwell’s rule, (9)), because a

TABLE 6—Expected utility.

Prosecution Defense Judge

Pr(H,) =1 Pr(Hy) =09 Pr(H,)=0 Pr(H,)=0.1 Pr(H,)=05

1 locus  0.1009 0.0917 0.9861 0.9672 0.9178
2 loci 0.1717 0.1546 0.9970 0.9529 0.7946
3 loci 0.3277 0.2949 0.9998 0.9302 0.7168
4 loci 0.6246 0.5621 1 0.9146 0.8352
5 loci 0.9149 0.8234 1 0.9064 0.9626
6 loci 0.9860 0.8874 1 0.9014 0.9930
7 loci 0.9998 0.8998 1 0.9 0.9999
8 loci 1 0.9 1 0.9 1

9 loci 1 0.9 1 0.9 1

10 loci 1 0.9 1 0.9 1

11 loci 1 0.9 1 0.9 1

12 loci 1 0.9 1 0.9 1

13 loci 1 0.9 1 0.9 1

14 loci 1 0.9 1 0.9 1

15 loci 1 0.9 1 0.9 1

Prosecution Defense Judge
Pr(H,) =1 Pr(H,) =09 Pr(H,)=0 Pr(H,)=0.1 Pr(H,)=0.5

1locus  0.1009 0.0947 0.9252 0.9124 0.8949

2 loci 0.1717 0.1570 0.9357 0.8978 0.7666

3 loci 0.3277 0.2965 0.9647 0.8987 0.7023

4 loci 0.6246 0.5632 0.9856 0.9016 0.8324

5 loci 0.9149 0.8239 0.9950 0.9020 0.9624

6 loci 0.9860 0.8876 0.9979 0.8995 0.9930

7 loci 0.9998 0.8999 0.9991 0.8992 0.9999
8 loci 1 0.9 0.9996 0.8997 1
9 loci 1 0.9 0.9999 0.8999 1
10 loci 1 0.9 1 0.9 1
11 loci 1 0.9 1 0.9 1
12 loci 1 0.9 1 0.9 1
13 loci 1 0.9 1 0.9 1
14 loci 1 0.9 1 0.9 1
15 loci 1 0.9 1 0.9 1

decision-maker must always leave some room for doubt. Table 6
also presents the expected utilities for both the prosecutor and the
defense, which are computed using Pr(#,) equal to 0.9 and 0.1,
respectively. Note that with Pr(H,) = 0.1, the expected utility for
the defense decreases. In fact, if the defense is sure that the sus-
pect is not the source of the stain, then the expected utility in-
creases for each new marker typed as the probability of finding a
nonmatch increases. Conversely, if there is a doubt that the sus-
pect might be the source of the stain, it is reasonable to believe
that high values of V will be observed. Therefore, the defense will
not obtain a larger expected utility in typing more markers. This
explains why the utility decreases. The more the defense believes
the suspect is the source of the stain, the less desirable it would be
to type extra markers. A sensitivity analysis to the prior probabil-
ities will be performed in the Section entitled “Sensitivity to prior
probabilities.”

The expected utility in cases involving related persons such as
siblings is given in Table 7.

The expected utility is constant after a number, say x, of mark-
ers typed (see Tables 6 and 7). For the sake of illustration, let us
consider the prosecutor’s perspective in Table 6. The expected
utility of decision djg is equal to the expected utility of the decision
dis. One might argue that as a decision problem is solved by
maximizing the expected utility, there would be no difference in
typing more then eight markers, because the same expected utility
is obtained. Nevertheless, the aim here is to offer a tool to measure
the benefit given by every new marker typed. The value of infor-
mation is assessed using the expected benefit, which represents a
difference in the expected utilities, the difference made by intro-
ducing new information. For example, the expected benefit ob-
tained from marker i is calculated by

EB(Markeri) :E(U‘dl) —E(U|di,1)l.: 2,...,m. (4)

So, in order to make a decision based on an increasing number
of markers to type, it is necessary to compute for every new
marker a measure on how much is gained, in terms of utility.
Values of information can be graphically represented using a per-
centage increment in terms of utility as depicted in Figs. 1 and 2.
In particular, in Fig. 1 it can be observed that the second to the
fifth markers bring considerable information. A less significant
contribution is made by the sixth and the seventh markers, while
successive markers do not add any further valuable information.



36 JOURNAL OF FORENSIC SCIENCES

100 — T

90

80

70

60

50

40

30

Increment in terms of utility (%)

20

10

I 1 1 1
1 2 3 4 5 6 7 8 9 10 11
Number of markers

12 13 14 15

FIG. 1—Expected benefit under the prosecution’s proposition, Hy,.

In the same way, in Fig. 2, which represents a scenario involv-
ing full siblings as the relevant population, it can be noted that
from the ninth analysis on, the contribution of extra markers is less
than 0.05%. This means that every new marker typed will not in-
crease the total amount of the information already available.

It can be said that a good decision is one that makes effective
use of the information available to the decision-maker at the time
the decision is made. The expected benefit represents a way of
assessing the extent to which specific information will help the
scientist to decide coherently among actions.

Graphical Models and Sensitivity Analysis

Bayesian networks (BNs) provide a language of building blocks
for constructing probability and decision models from modular
components. They provide a valuable aid for representing rela-
tionships between characteristics in situations of uncertainty.
They assist the user not only in describing a complex problem
and communicating information about its structure but also in
calculating the effect of knowing the truth of one proposition or
one piece of evidence on the plausibility of others. BNs represent
uncertainty and may be used for probabilistic inference.

3.5 — T T T T T T T T T T T 1T
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FIG. 2—Expected benefit under the defense’s proposition, Hy, in cases in-
volving related persons (full siblings).

Nodes and arcs are the main ingredients of a BN. Nodes rep-
resent a set of random variables. Each node is characterized by
states describing the values that the corresponding variables can
take. A set of directed arcs connects pairs of nodes representing
the direct dependencies between variables. Nodes and arcs form a
directed acyclic graph (21).

An extension of BNs provides the scientist with an aid to sup-
port decision-making. Adding an explicit representation of the
decisions under consideration and the value (utility) of the result-
ing outcomes (the states that may result from a decision) gives
Bayesian decision networks, BDNs, also called influence dia-
grams. These networks combine probabilistic reasoning with the
utility theory to make decisions using the criteria of maximizing
the expected utility.

An influence diagram consists of three types of nodes:

e the chance nodes represent random variables (as in BNs);

e the decision nodes represent decisions to make. The states of a
decision node are the different actions that the decision-maker
must choose between; and

o the utility nodes represent the decision-maker’s utility function.
They are characterized by utility tables specified for every out-
come.

Figure 3 presents an influence diagram that can be implemented
for the problem of interest. The decision node represents the de-
cision about the number of markers to type, while the chance node
represents the state of nature. The link between the decision node
and the chance node allows the scientist to take into account the
fact that the probability of each state of nature depends on the
number of markers typed. So, the probability table associated with
the chance node represents conditional probabilities Pr(0;ld;),
j=1,..,nandi=1, ..., m.

An arc from the chance node to the utility node is added, as
utilities depend on the state of nature. Note that utility values are
also objective-dependent (i.e., prosecutor, defense, or judge). It
can be noted that there is no parent (chance) node to the decision
node (no arc pointing to this node). If information is known before
making a decision, then an arc from this chance node to the de-
cision node is necessary; this is not the case in the situation of
interest. Note also that there is no link between the decision and
the utility node. This is because it is assumed that utility values are
constant whatever the number of markers typed.

Decision analysis is typically an iterative process: once the
model is built, sensitivity analysis is performed. Sensitivity anal-
ysis is a general technique for studying the effects of modifica-
tions of the input parameters of a model on the output. This
approach answers questions such as “if we make a slight change in
one or more aspects of the model, does the optimal decision
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FIG. 3—Influence diagram.
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FIG. 4—Influence diagram used to perform the sensitivity analysis on
utilities.

change?” (22). The main purpose is to obtain an idea about which
aspects are determinant for the decision.

The simplest way to perform sensitivity analysis is to vary sys-
tematically one of the network parameters, keeping all others fix-
ed. This analysis is termed “one-way sensitivity analysis.” If
several parameters are modified simultaneously, sensitivity anal-
ysis is called “multi-way” (examples are presented in Beidermann
and Taroni (23)).

Attention is focused on two elements: the utility values and the
prior probabilities of the main proposition, Hy,. The two aspects
are studied separately through “ome-way” sensitivity analysis
using the influence diagram built in GeNie (software available
at http://www2.sis.pitt.edu/~genie/).

Sensitivity to Utility Values

Utility values are, by definition, personal. They are always a
choice of the decision-maker, and therefore they depend on his
objective. Sensitivity analysis is performed to check how much
the optimal strategy is affected by different assessments in terms
of utility values. Figure 4 presents the influence diagram used to
perform the sensitivity analysis on the utility values.

The probabilities for each state of nature are computed using
Eq. (2), where Pr(0,ld;, H,) and Pr(0,ld;, Hy) are as in Tables 2 and
3, while Pr(H,,) and Pr(Hy) are set to be equal to 1. The slope of
the utility function has been modified for each objective studied:
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the prosecutor’s, the defense lawyer’s, and the judge’s, respect-
ively. In each situation, three different utility functions (cases (a),
(b), (c)) have been proposed, keeping the original tendency un-
changed (see Figs. 5, 6, and 7, left). Note that the second case, (b),
represents the original utility function used in the Section entitled
“Utility as a measure for the value of information.”

The expected utilities obtained for the prosecutor are presented
in Fig. 5 (right) and they show that the optimal number of markers
to type could decrease until five loci under specific conditions,
such as the situation (c).

For the defense lawyer, the optimal decision is not sensitive to
utility values. This follows immediately from probabilities for the
states of nature given in Table 3. Neverthless, when considering
cases involving related persons, the expected utilities are more
sensitive to utility values, but the optimal decision is to type 9
markers in each case (see Fig. 6, right).

For a judge, the optimal decision is not very sensitive to chang-
es in utilities (see Fig. 7, right).

In conclusion, the optimal decision is sensitive to strong chang-
es in utilities for the prosecutor (decreasing the number of analysis
to perform in case (c)). For the defense lawyer and the judge,
different choices, in terms of utility values for the states of nature,
affect the expected utilities for a few number of markers, but they
have a very slight effect on its maximum, which represents the
optimal number of markers to type.

Sensitivity to Prior Probabilities

A simple result that follows from Bayes’ theorem is that it is
inadvisable to attach a probability equal to zero for states of
nature; if the prior probability is zero, so is the posterior, what-
ever the data. In other words, if a decision-maker thinks
something cannot be true, he will never be influenced by any
data. A probability of one is equally dangerous (9). According
to this, Pr(H,) and Pr(H,) should not be imperatively fixed at
1or0.

Sensitivity analysis is performed to check how different prior
probabilities affect the optimal decision. Figure 8 represents the
BDN used to perform sensitivity analysis to probabilities for the
states of nature. No sensitivity analysis has been performed for the
judge’s perspective, because of its neutral position (equal prior
probabilities for Pr(H) and Pr(Hy)).
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FIG. 5—Prosecutor’s perspective: Utility functions (left). Sensitivity of the optimal decision to the utility values (right). The arrows show the optimal decision.
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FIG. 7—Judge’s perspective: Utility functions (left). Sensitivity of the optimal decision to the utility values (right). The arrow shows the optimal decision.

The prior probabilities, Pr(H},) for the prosecutor and Pr(Hg) for
the defense, have been modified from 1 to 0.6. These changes
have no consequences on the final decision (see Table 8 and 9.
Note that expected utilities for dg, . . ., d|5 are constant).

From Table 8, it is observed that prior probabilities <1 do not
affect the optimal number of markers to type, although the ex-
pected utilities are lower. From Table 9, it can be supported that
the greater the doubt about the fact that the suspect is or is not the
source of the stain, the smaller the expected utilities will be (see
the values in the first line in Table 9). Moreover, with Pr(H,<1),
expected utilities decrease as the total number of markers typed
increases (see values in the second to fifth column in Table 9);
therefore, the optimal decision will clearly be to type no more than
a single marker to avoid a possible match between DNA profiles
coming from the suspect and the crime stain.

Discussion and Conclusion

Elements suggesting a solution to the question of interest, how
many markers must I type to compare the crime sample with the
suspect’s material for forensic purposes? have been presented.

Decision analysis has been introduced to deal with this problem
and it has been advocated that this kind of analysis helps the sci-
entist to better understand the problem he is faced with and to
make clearer and more consistent decisions (i.e., why is a chosen
action appropriate?).
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FIG. 8—Influence diagram to perform the sensitivity analysis to the prob-
abilities for the states of nature.
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TABLE 8—Prosecutor’s perspective: sensitivity of the expected utility to prior
probabilities.

Pr(H,) =1 Pr(H,) =09 Pr(Hy) =08 Pr(Hy)=0.7 Pr(H,)=0.6

1locus 0.1 0.09087 0.08175 0.07263 0.06351
2 loci 0.1022 0.09026 0.08031 0.07036 0.06041
3 loci 0.17818 0.16037 0.14255 0.12474 0.10692
4 loci 0.66907 0.60216 0.53526 0.46835 0.40144
5 loci 0.92490 0.83241 0.73992 0.64743 0.55494
6 loci 0.98585 0.88726 0.78868 0.69009 0.59151
7 loci 0.99978 0.89980 0.79983 0.69985 0.59987
8 loci 1 0.9 0.8 0.7 0.6

TABLE 9—Defense’s perspective: sensitivity of the expected utility to prior
probabilities.

Pr(H,) =1 Pr(H,)=09 Pr(H,) =08 Pr(H,) =07 Pr(H,=0.6
1locus  0.9861 0.9672 0.9483 0.9295 0.9106
2loci  0.9970 0.9529 0.9089 0.8649 0.8209
3loci 0.9998 0.9302 0.8606 0.7910 0.7215
4loci 1 0.9146 0.8292 0.7437 0.6583
5loci 1 0.9064 0.8129 0.7193 0.6258
6loci 1 0.9014 0.8028 0.7042 0.6056
7loci 1 0.9 0.8 0.7001 0.6001
8loci 1 0.9 0.8 0.7 0.6

Utility values have been used; they represent a personal meas-
ure of objective achievement. Utility as a measure of the value of
the information (a measure of the benefit given by every new
marker typed) has also been developed. It has been shown that in a
scenario involving full siblings as a relevant population (the more
extreme situation in favor of the defense), from the ninth marker
on, the contribution of any new marker is extremely low, notably
<0.05%. This means that every new marker will add very little to
the overall information already available.

Utility values used in decision analysis have been assumed
constant for all possible decisions. This assumption can be re-
laxed; a decision-maker can specify that the same piece of infor-
mation (for example, an apportionment of the likelihood ratio)
does not have the same value if it is obtained after 1 marker is
typed or after 15 markers have been typed. This situation appears
in a transparent way using graphical models. Here, in fact, there
are arcs from “States of Nature” and “Decision” nodes to “Util-
ity” nodes capturing the idea that a scientist’s satisfaction will
depend on a combination of a result and an action. The prefer-
ences are made explicit in the (conditional) utility table.

In conclusion, it can be claimed that a good decision is one that
makes effective use of the information available to the decision-
maker at the time the decision is made. The specific information
the scientist has, or can obtain, will help him to decide coherently
among actions. Expected benefit is a way to do it. It has been
shown that an arbitrary increase in the number of markers in DNA
typing does not seem to be supported by decision analysis.
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